25 research outputs found

    Índice de Kirchhoff de redes compuestas

    Get PDF
    El cálculo de la resistencia efectiva entre cualquier par de vértices de una red, así como el Índice de Kirchhoff, tiene gran interés en la Teoría de circuitos eléctricos y en cadenas de Markov. En la última década estos parámetros han sido aplicados al ámbito de la Química Orgánica como descriptores estructurales alternativos a los utilizados habitualmente para discriminar entre diferentes moléculas con formas y estructuras similares. Esta nueva aplicación ha generado una importante y fructífera línea de trabajo que ha dado como resultado la evaluación del Índice de Kirchhoff en redes con estructuras simétricas como por ejemplo grafos distancia regulares, grafos circulantes, cadenas lineales y algunos fullerenos. Asimismo, recientemente se ha introducido una amplia gama de Índices de Kirchhoff generalizados que han sido calculados para algunas redes. El objetivo del trabajo es obtener expresiones del Índice de Kirchhoff en redes compuestas, como por ejemplo la suma, la corona y el cluster.. El cálculo de la resistencia efectiva entre cualquier par de vértices de una res así como del Índice de Kirchhoff tienes gran interés en la Teoría de circuitos eléctricos y en cadenas de Markov. En la última década estos parámetros han sido aplicados al ámbito de la Química Orgánica como descriptores estructurales alternativos a los utilizados habitualmente para disccriminar entre diferentes moléculas con formas y estructuras similares. Esta nueva aplicación ha generado una importante y fructífera línea de trabajo que ha dado como resultado la evaluación del índice de Kirchhoff en redes con estructuras simétricas, como por ejemplo grafos distancia regulares, grafos circulantes, cadenas lineales y algunos fullerenos. Asimismo, recientemente se han introducido una amplia gama de Índices de Kirchhoff generalizados que han sido calculados para algunas redes. El objetivo del trabajo es obtener expresiones de las resistencias efectivas y del Índice de Kirchhoff en redes compuestas, como por ejemplo la composición, la corona y el cluster

    The inverse problem on finite networks

    Get PDF
    The aim of this thesis is to contribute to the field of discrete boundary value problems on finite networks. Boundary value problems have been considered both on the continuum and on the discrete fields. Despite working in the discrete field, we use the notations of the continuous field for elliptic operators and boundary value problems. The reason is the importance of the symbiosis between both fields, since sometimes solving a problem in the discrete setting can lead to the solution of its continuum version by a limit process. However, the relation between the discrete and the continuous settings does not work out so easily in general. Although the discrete field has softness and regular conditions on all its manifolds, functions and operators in a natural way, some difficulties that are avoided by the continuous field appear. Specifically, this thesis endeavors two objectives. First, we wish to deduce functional, structural or resistive data of a network taking advantage of its conductivity information. The actual goal is to gather functional, structural and resistive information of a large network when the same specifics of the subnetworks that form it are known. The reason is that large networks are difficult to work with because of their size. The smaller the size of a network, the easier to work with it, and hence we try to break the networks into smaller parts that may allow us to solve easier problems on them. We seek the expressions of certain operators that characterize the solutions of boundary value problems on the original networks. These problems are denominated direct boundary value problems, on account of the direct employment of the conductivity information. The second purpose is to recover the internal conductivity of a network using only boundary measurements and global equilibrium conditions. For this problem is poorly arranged because it is highly sensitive to changes in the boundary data, at times we only target a partial reconstruction of the conductivity data or we introduce additional conditions to the network in order to be able to perform a full internal reconstruction. This variety of problems is labelled as inverse boundary value problems, in light of the profit of boundary information to gain knowledge about the inside of the network. Our work tries to find situations where the recovery is feasible, partially or totally. One of our ambitions regarding inverse boundary value problems is to recuperate the structure of the networks that allow the well-known Serrin's problem to have a solution in the discrete setting. Surprisingly, the answer is similar to the continuous case. We also aim to achieve a network characterization from a boundary operator on the network. With this end we define a new class of boundary value problems, that we call overdetermined partial boundary value problems. We describe how the solutions of this family of problems that hold an alternating property on a part of the boundary spread through the network preserving this alternance. If we focus in a family of networks, we see that the above mentioned operator on the boundary can be the response matrix of an infinite family of networks associated to different conductivity functions. By choosing an specific extension, we get a unique network whose response matrix is equal to a previously given matrix. Once we have characterized those matrices that are the response matrices of certain networks, we try to recover the conductances of these networks. With this end, we characterize any solution of an overdetermined partial boundary value problem and describe its resolvent kernels. Then, we analyze two big groups of networks owning remarkable boundary properties which yield to the recovery of the conductances of certain edges near the boundary. We aim to give explicit formulae for the acquirement of these conductances. Using these formulae we are allowed to execute a full conductivity recovery under certain circumstances.Aquesta tesi té dos objectius generals. Primer, volem deduir dades funcionals, estructurals o resistives d'una xarxa fent servir la informació proporcionada per la seva conductivitat. L'objectiu real és aconseguir aquesta informació d'una xarxa gran quan coneixem la mateixa de les subxarxes que la formen. El motiu és que les xarxes grans no són fàcils de treballar a causa de la seva mida. Com més petita sigui una xarxa, més fàcil serà treballar-hi, i per tant intentem trencar les xarxes grans en parts més petites que potser ens permeten resoldre problemes sobre elles més fàcilment. Principalment busquem les expressions de certs operadors que caracteritzen les solucions dels problemes de contorn en les xaxes originals. Aquests problemes es diuen problemes directes, ja que s'empren directament les dades de conductivitat per obtenir informació. El segon objectiu és recuperar les dades de conductivitat a l'interior d'una xarxa emprant només mesures a la frontera de la mateixa i condicions d'equiliri globals. Com que aquest problema no està ben establert perquè és altament sensible als canvis en les dades de frontera, de vegades només busquem una reconstrucció partial de la conductivitat o afegim condicions a la xarxa per tal de recuperar completament la conductivitat. Aquest tipus de problemes es diuen problemes inversos, ja que es fa servir informació a la frontera per aconseguir coneixements de l'interior de la xarxa. Aquest treball tracta de trobar situacions on la recuperació, total o parcial, es pugui dur a terme. Una de les nostres ambicions quant a problemes inversos és recuperar l'estructura de les xarxes per les que el ben conegut Problema de Serrin té solució en el camp discret. Sorprenentment, la resposta és similar al cas continu. També volem caracteritzar les xarxes mitjançant un operador a la frontera. Amb aquesta finalitat definim els problemes de contorn parcials sobredeterminats i describim com les solucions d'aquesta família de problemes que tenen una propietat d'alternància a una part de la frontera es propaguen a través de la xarxa mantenint aquesta alternància. Si ens centrem en una certa família de xarxes, veiem que l'operador a la frontera que abans hem mencionat pot ser la matriu de respostes d'una família infinita de xarxes amb diferentes conductivitats. Escollint una extensió en concret, obtenim una única xarxa per la qual una matriu donada és la seva matriu de respostes. Un cop hem caracteritzat aquelles matrius que són la matriu de respostes de certes xarxes, intentem recuperar les conductàncies d'aquestes xarxes. Amb aquesta finalitat, caracteritzem qualsevol solució d'un problema de contorn parcial sobredeterminat. Després, analitzem dos gran grups de xarxes que tene propietats de frontera notables i que ens porten a la recuperació de les conductàncies de certes branques a prop de la frontera. L'objectiu és donar fórmules explícites per obtenir aquestes conductàncies. Fent servir aquestes fórmules, aconseguim dur a terme una recuperació completa de conductàncies sota certes circumstànciesPostprint (published version

    Discrete inverse problem on grids

    Get PDF
    In this work, we present an algorithm to the recovery of the conductance of a n –dimensional grid. The algorithm is based in the solution of some overdetermined partial boundary value problems defined on the grid; that is, boundary value problem where the boundary conditions are set only in a part of the boundary (partial), and moreover in a fix subset of the boundary we prescribe both the value of the function and of its normal derivative (overdetermined). Our goal is to recover the conductance of a n –dimensional grid network with boundary using only boundary measurements and global equilibrium conditions. This problem is known as inverse boundary value problem . In general, inverse problems are exponentially ill–posed, since they are highly sensitive to changes in the boundary data. However, in this work we deal with a situation where the recovery of the conductance is feasible: grid networks. The recovery of the conductances of a grid network is performed here using its Schr ¨odinger matrix and boundary value problems associated to it. Moreover, we use the Dirichlet–to–Robin matrix, also known as response matrix of the network, which contains the boundary information. It is a certain Schur complement of the Schr ¨odinger matrix. The Schur complement plays an important role in matrix analysis, statistics, numerical analysis, and many other areas of mathematics and its applications.Postprint (author's final draft

    Dirichlet-to-Robin matrix on networks

    Get PDF
    In this work, we de ne the Dirichlet{to{Robin matrix associated with a Schr odinger type matrix on general networks, and we prove that it satis es the alternating property which is essential to characterize those matrices that can be the response matrices of a network. We end with some examples of the sign pattern behavior of the alternating paths.Postprint (author's final draft

    Green functions on product networks

    Get PDF
    We aim here at determining the Green function for general Schrödinger operators on product networks. The first step consists in expressing Schrödinger operators on a product network as sum of appropriate Schrödinger operators on each factor network. Hence, we apply the philosophy of the separation of variables method in PDE, to express the Green function for the Schrödinger operator on a product network using Green functions on one of the factors and the eigenvalues and eigenfunctions of some Schrödinger operator on the other factor network. We emphasize that our method only needs the knowledge of eigenvalues and eigenfunctions of one of the factors, whereas other previous works need the spectral information of both factors. We apply our results to compute the Green function of Pm×Sh , where Pm is a Path with m vertices and Sh is a Star network with h+1 vertices.Peer ReviewedPostprint (author's final draft

    Overdetermined partial resolvent kernels for finite networks

    Get PDF
    In [2], a study of the existence and uniqueness of solution of partial overdetermined boundary value problems for finite networks was performed. These problems involve Schrodinger operators and the novel feature is that no data are prescribed on part of the boundary, whereas both the values of the function and of its normal derivative are given on another part of the boundary. In the present work, we study the resolvent kernels associated with overdetermined partial boundary value problems on finite network and we express them in terms of the well-known Green operator and the Dirichlet-to-Robin map. Moreover, we analyze their main properties and we compute them in the case of a generalized cylinder. The obtained expression involve polynomials that can be seen as a generalization of Chebyshev polynomials, and indeed when the conductances along axes are constant the expressions for the overdetermined partial resolvent kernels are given in terms of second kind Chebyshev polynomials. (C) 2015 Elsevier Inc. All rights reserved.Postprint (author's final draft

    Green function on product networks

    No full text
    Our objective is to determine the Green function of product networks in terms of the Green function of one of the factor networks and the eigenvalues and eigenfunctions of the Schr odinger operator of the other factor network, which we consider that are known. Moreover, we use these results to obtain the Green function of spider networks in terms of Green functions over cicles and paths.Peer Reviewe

    Green function on product networks

    No full text
    Our objective is to determine the Green function of product networks in terms of the Green function of one of the factor networks and the eigenvalues and eigenfunctions of the Schr odinger operator of the other factor network, which we consider that are known. Moreover, we use these results to obtain the Green function of spider networks in terms of Green functions over cicles and paths.Peer ReviewedPostprint (published version

    Dirichlet-to-Robin matrix on networks

    No full text
    In this work, we de ne the Dirichlet{to{Robin matrix associated with a Schr odinger type matrix on general networks, and we prove that it satis es the alternating property which is essential to characterize those matrices that can be the response matrices of a network. We end with some examples of the sign pattern behavior of the alternating paths
    corecore